Identification of a translocated gating charge in a voltage-dependent channel. Colicin E1 channels in planar phospholipid bilayer membranes
نویسندگان
چکیده
The availability of primary sequences for ion-conducting channels permits the development of testable models for mechanisms of voltage gating. Previous work on planar phospholipid bilayers and lipid vesicles indicates that voltage gating of colicin E1 channels involves translocation of peptide segments of the molecule into and across the membrane. Here we identify histidine residue 440 as a gating charge associated with this translocation. Using site-directed mutagenesis to convert the positively charged His440 to a neutral cysteine, we find that the voltage dependence for turn-off of channels formed by this mutant at position 440 is less steep than that for wild-type channels; the magnitude of the change in voltage dependence is consistent with residue 440 moving from the trans to the cis side of the membrane in association with channel closure. The effect of trans pH changes on the ion selectivity of channels formed by the carboxymethylated derivative of the cysteine 440 mutant independently establishes that in the open channel state, residue 440 lies on the trans side of the membrane. On the basis of these results, we propose that the voltage-gated opening of colicin E1 channels is accompanied by the insertion into the bilayer of a helical hairpin loop extending from residue 420 to residue 459, and that voltage-gated closing is associated with the extrusion of this loop from the interior of the bilayer back to the cis side.
منابع مشابه
Voltage-dependent gating properties of the channel formed by E. coli hemolysin in planar lipid membranes.
Escherichia coli hemolysin forms cation selective, ion-permeable channels of large conductance in planar phospholipid bilayer membranes. The pore formation mechanism is voltage dependent resembling that of some colicins and of diphtheria toxin: pores open when negative voltages are applied and close with positive potentials. The pH dependence of this gating process suggests that it is mediated ...
متن کاملMajor transmembrane movement associated with colicin Ia channel gating
Colicin Ia, a bacterial protein toxin of 626 amino acid residues, forms voltage-dependent channels in planar lipid bilayer membranes. We have exploited the high affinity binding of streptavidin to biotin to map the topology of the channel-forming domain (roughly 175 residues of the COOH-terminal end) with respect to the membrane. That is, we have determined, for the channel's open and closed st...
متن کاملEvidences for a new cation channel in the brain mitochondrial inner membrane
Introduction: Previous studies and our works have indicated several cation channels in the rat brain mitochondrial inner membrane. In this work, we report the single-channel characterization of a cation channel from the rat brain mitochondrial inner membrane incorporated into a planar lipid bilayer. Methods: After removing and homogenizing the adult rat brain, its supernatant was centrifuged...
متن کاملComparison of the macroscopic and single channel conductance properties of colicin E1 and its COOH-terminal tryptic peptide.
A COOH-terminal tryptic fragment (Mr approximately equal to 20,000) of colicin E1 has been proposed to contain the membrane channel-forming domain of the colicin molecule. A comparison is made of the conductance properties of colicin E1 and its COOH-terminal fragment in planar bilayer membranes. The macroscopic and single channel properties of colicin E1 and its COOH-terminal tryptic fragment a...
متن کاملTryptophan-dependent sensitized photoinactivation of colicin E1 channels in bilayer lipid membranes.
The bacterial toxin colicin E1 is known to induce voltage-gated currents across a planar bilayer lipid membrane. In the present study, it is shown that the colicin-induced current decreased substantially upon illumination of the membrane in the presence of the photosensitizer, aluminum phthalocyanine. This effect was almost completely abolished by the singlet oxygen quencher, sodium azide. Usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 98 شماره
صفحات -
تاریخ انتشار 1991